A Parallel Expressed Sequence Tag (EST)
Clustering Program

Kevin Pedretti, Todd Scheetz, Terry Braun, Chad Roberts, Natalie Robinson,
and Thomas Casavant

Parallel Processing Laboratory,
and The Coordinated Laboratory for Computational Genomics,
Dept. of Electrical and Computer Engineering University of Iowa,
TIowa City TA 52242, USA

Abstract. This paper describes the Ulcluster software tool, which par-
titions Expressed Sequence Tag (EST) sequences and other genetic se-
quences into “clusters” based on sequence similarity. Ideally, each cluster
will contain sequences that all represent the same gene. If a naive ap-
proach such as an Nz N comparison (N is the number of sequences input)
is taken, the problem is only feasible for very small data sets. Ulcluster
has been developed over the course of four years to solve this problem ef-
ficiently and accurately for large data sets consisting of tens or hundreds
of thousands of EST sequences. The latest version of the application has
been parallelized using the MPI (message passing interface) standard.
Both the computation and memory requirements of the program can be
distributed among multiple (possibly distributed) UNIX processes.

1 Introduction

Clustering is the process of taking a set of elements and partitioning them into
meaningful groups. In the high throughput gene sequencing activities of our lab-
oratories, we generate large numbers of short sequences — Expressed Sequence
Tags (ESTs) — and partition them into sets based on similarity. The importance
of this problem bears on several aspects, but the principal of these are creating
non-redundant indices of genes and assessing the novelty of sequencing. If done in
a naive fashion, such as a NxN comparison, this problem would be intractable
for the data set sizes we produce (50K-300K ESTSs). Although there are sev-
eral existing software system [7/5[Tl6] available that perform sequence clustering
accurately, our program is unique in its ability to efficiently and accurately clus-
ter EST sequences. Over the past four years, we have developed techniques to
speed up the computation by using increasingly sophisticated heuristics along
with parallel processing techniques. The usefulness of our program, UIcluster,
has been demonstrated in the identification of more than 100,000 unique/novel
clusters across three species (human, mouse, and rat).

V. Malyshkin (Ed.): PaCT 2001, LNCS 2127, pp. 490497, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Parallel Expressed Sequence Tag (EST) Clustering Program 491

2 Expressed Sequence Tags (ESTSs)

From a biological perspective, ESTs are partial transcripts of genes. Specifi-
cally, they are sequenced from cDNA (complementary DNA) clones, synthesized
from polyA-selected whole-cell RNA. To prepare for EST sequencing, mRNA
molecules are extracted from cells and converted into ¢cDNA through reverse
transcription. The cDNAs are then cloned into a vector and electroporated into
bacteria for growth, amplification, and storage. A collection of such cDNAs is
referred to as a library. Each ¢cDNA library potentially contains many unique
and previously undiscovered genes. However, significant redundancy within a
library (multiple copies of the same mRNA) and between libraries is normal.

High throughput EST sequencing for gene identification involves sequencing
the 3’ end of randomly chosen ¢cDNA clones from a ¢cDNA library. The use of
a poly-T primer during reverse transcription allows for the preferential creation
of cDNAs with a poly-A tail at their 3’ ends. Thus, sequencing can start from a
known position (within poly-A tail).

For the purposes of this paper, and from the computational perspective, an
EST is a character string made up of letters from the alphabet A, C, T, G,
X, N where A, C, T, and G represent the four nucleotide bases of DNA and X
and N represent bases within repetitive (low-complexity) segments or that are of
indeterminate identity. ESTs are typically between 400 to 1000 letters, or bases,
long. Comparing pairs of ESTs and looking for similarity is the basic element
of clustering. This comparison is complex because the underlying sequencing
technology is error prone — bases can be inserted, deleted, or misread. Studies
of our EST sequences have indicated that the error rate for EST sequencing is
approximately 5% for misread errors, and 1-2% for insertion/deletion errors.

3 Uses of Clustering

Clustering is used to assess the gene discovery rate of sequencing done from
c¢DNA libraries. For single library assessment, the entire set of ESTs obtained
from that library is used as a input for clustering. Clustering partitions the set
into subsets, or clusters, based on similarity. Each EST is a member of at most
one cluster. Novelty is computed as the number of clusters identified divided by
the number of sequences clustered.

This computation is used to calculate both incremental and overall novelty
rates (roughly corresponding to gene discovery rates) for individual cDNA li-
braries and for EST projects as a whole. Incremental novelty calculations are
performed daily to monitor the sequencing efforts and to determine when cDNA
library subtractions should occur [2]. This procedure can dramatically increase
novelty rates. However, the subtraction process is time consuming and cannot
be performed on a continual basis.

Figure [[shows an example of the effectiveness of these procedures for a
progression of four cDNA libraries, named C0, C1, C2p, and C3. Each sharp
increase in novelty rates corresponds to a subtraction on the preceding library
being performed.

492 K. Pedretti et al.

100.00%

90.00% BB
\/\" ~.
S

Incremental

\/\ ------- Overall
a s

80.00%

70.00% _\
60.00% \ \/ \ / \
50.00% \/

40.00%

Percent Novelty

0 5000 10000 15000 20000

Sequences Clustered

Fig. 1. Incremental library novelty

Another significant use of clustering is the generation of non-redundant gene
indices, or UniGene sets [7]. As mentioned previously, ideally each cluster will
uniquely represent a gene. Thus, the goal in constructing a UniGene set is to
bring together all of the ESTs sequenced for a given gene into a single clus-
ter. This information is useful for reducing redundant processing and for the
annotation of EST sequences.

4 Program Evolution

UIcluster has evolved as our laboratory’s processing requirements have in-
creased. Three generations of the clustering program have been developed to
date. The first revision was developed to work well for moderately sized data
sets of ESTs. As our data sets grew, this version required more than a days
computation time to cluster the entire set of ESTs. The main goal of the second
version of the program was improved performance for large data sets. A third,
parallelized version provided higher performance and several additional features
has recently been released. All revisions of UIcluster may be freely obtained
from our project web site (http://genome.uiowa.edu).

The basic clustering program flow proceeds as follows: 1) read one sequence
from the input file, 2) compare the sequence against every existing cluster, 3)
based on sequence similarity, either add it to an existing cluster or make it the
first member of a new cluster. This process is repeated until every sequence
in the input file is examined. In step 3, the EST is only added to an existing
cluster if the specified similarity criteria is met. The similarity criteria is run-
time configurable and is of the form N out of M bases. For example, 38 out
of 40 bases would mean two sequences are judged to be similar if there is at
least one window of 38 out of 40 bases in common, allowing insertion, deletion,
and mismatch errors. The speed of the program is directly effected by these
parameters. Higher error tolerance (M — N) increases program execution time
significantly as does larger window sizes (M).

A Parallel Expressed Sequence Tag (EST) Clustering Program 493

Sequence: GCCACTTGGCGTTTTG

Hashes:
Hash 1: GCCACTTG = 48406
Hash 2: CCACTTGG = 44869
Hash 3: CACTTGGC = 27601
Hash 4: ACTTGGCG = 39668
Hash 5: CTTGGCGT = 59069
.etc.

Fig. 2. Example of hashing a sequence

4.1 Revision 1.0

Revision 1.0 was useful for relatively small data sets (< 30,000 ESTs). The pro-
gram was structured so that clusters were stored in a 2-D linked list. Each EST
read from the input file was compared against a single representative element
from each cluster. The longest EST from each cluster was used as a representa-
tive element for that cluster.

Evaluating the N of M similarity criteria for two sequences is computation-
ally intensive. As a performance optimization, we used a hashing technique to
eliminate comparisons that will obviously be unsuccessful (i.e., the N of M cri-
teria will not be met). A hash is simply an integer that uniquely represents a
short string of characters. The general equation used to generate a hash is given

by ().
¢—1
H=> (K'x¢) (1)
1=0

In this equation, H is the generated hash value, (is the string length, K is
the alphabet size, and ¢; is the integer value assigned to the letter at position
i in the string being hashed. The string length ¢ that can be used to generate
hashes is limited by the word size of the computer. For the DNA alphabet, each
base requires 2-bits to represent it ([log, K| where K = 4 for DNA). Thus, the
maximum value of ¢ using a single word on a 32-bit machine is 16.

When a sequence is hashed, equation [Mis used on every ¢ length sub-string.
Figure 2 shows the first six hashes generated for a sample sequence with ¢ = 8.

When an EST is clustered, the N of M similarity criteria is only evaluated
for cluster representatives that contain one or more hashes in common with
the EST being clustered. The length of the hash probe used is an important
parameter that can significantly affect performance. Longer hash lengths will
result in better performance for a given similarity criteria. It must also be chosen
carefully so that potential similarities are not missed. The formula for calculating
the maximum hash size is shown in ([2)). The rational for this equation is that for
any chosen similarity criteria N of M, there is at least one contiguous, error-free
region of ¢ bases. Thus, the comparison of two sequences can be accelerated
by first searching for short exact matches of length (bases between the pair
(i.e. searching for identical hashes). If such a match is found, a more exhaustive

494 K. Pedretti et al.

\@\\\|\\E\
°

Primary
Sequence Name
Sequence
Linked list of Hashes
clusters that Hash Indexes

contain at least 1 Touch Count

hash with value 2.

°

>
v
1 Pointer To
- Secondaries

Fig. 3. Global hash table

T el

search that permits errors can be performed. If no length ¢ hashes are identified,
then the two sequences cannot possibly contain a window of M bases with IV

bases in common.
M
e 2
¢= =~ 1) e

The calculation to generate the hashes for a sequence is only performed once
since the hash lists are stored in memory. However, the hashes are accessed
many times during the programs execution. This amortizes the computational
overhead of generating the hashes.

4.2 Revision 2.0

The main improvement in revision 2.0 was the implementation of the global
hash table (GHT). As our EST data sets grew larger, the sequential nature of
the traversal of the cluster representative linked list for every input sequence
became a bottleneck. The GHT optimizes the program at a higher level than
individual sequence comparisons by filtering the entire search space of cluster
representatives into a subset of high-potential candidate targets.

When a new sequence is clustered, a list of hashes is generated for each (
base window of its sequence. Each hash in the list is then used as an index into
the GHT. Figure [3 shows a GHT with 4° elements, corresponding to ¢ = 8.
Each element in the table points to a linked list of clusters that contain at
least one occurrence of the hash equal to its index. In figure B, there are three
clusters that contain the hash 2. If the sequence being clustered also has a hash
of two, the touch count field of each cluster linked from the second element in
the GHT is incremented. If the touch count field of a cluster exceeds a run-time
configurable threshold, a detailed sequence comparison is performed between the
input sequence and the candidate cluster. This procedure is based on the premise
that two similar sequences will likely have many hashes in common.

Care must be taken to adjust the touch count threshold appropriately. For
a given similarity criteria (e.g. 38 out of 40 bases) and hash length (, if the

A Parallel Expressed Sequence Tag (EST) Clustering Program 495

50000 1 Revision1.0 _——

40000 -

30000 A

20000 -

Time (seconds)

Revision 2.0
~30 Minutes

p

e
10096 20192 30288 40384 50480 60576 70672 80766
Sequences Clustered

10000 -

Fig. 4. Execution time of Revision 1.0 vs. Revision 2.0

threshold is too low the speedup due to the GHT will be small. Conversely if
the threshold is too high, some sequence similarities will be missed.

FigureMshows the execution time for both revisions of the clustering program
with an input data set of 80,766 rat EST sequences. Revision 2.0 demonstrates
28x speedup while calculating virtually identical results. The major trade-off of
the GHT optimization is memory utilization. However, on a 2GB machine we
have been able to cluster data sets as large as 1 million ESTs. While theoretically
the first revision could handle data sets this long, the computation time required
would make it impractical.

4.3 Revision 3.0

The latest version of the clustering program has been parallelized to split up
the computational and memory requirements across several computers (com-
pute nodes). The main reasons for doing this are for added performance and so
that the program can scale to larger problem sizes without being constrained
by the memory limitations of a single computer. The MPI (message passing
interface) [4] communication standard has been used for inter-process commu-
nication.

In this mode of execution, each cluster is stored on exactly one compute node.
A given sequence is read in from the input file and processed in parallel on each
compute node. This results in a parallel search of the cluster space. Once each
node has finished its search, each node’s best match is collectively communicated
to all compute nodes. The node with the best match stores the sequence in its
memory space. If no match is found on any of the compute nodes, the input
sequence becomes a new cluster and is assigned to one of the compute nodes.
Clusters are balanced evenly across the compute nodes.

Figure [l illustrates the parallel speedup obtained for clustering a data set
of approximately 81,000 rat EST sequences. The three curves represent three
different runs of the program using different parameter sets. The first curve
(labeled 1) corresponds to the default parameters used in our processing pipeline.

496 K. Pedretti et al.

e —

—e—1 [[1=8min, 8 =12 min

o @2 ||1=38min, 8=8.5min
3

§3 / 43 [[1=48min, 8=11min
(2]
2

#Processes

Fig. 5. Parallel speedup

The second curve (labeled 2) adds the extended search option. By default, an
EST is added to the first cluster it found to be similar to and the search is halted.
This option enables the identification of all similar cluster representatives for
each EST clustered. The third curve (labeled 3) enables the reverse complement
checking option of the program.

Since the implementation uses a collective communication at the end of every
sequence clustered, the amount of computation required for each sequence is
important. As the grain size increases, better performance should be observed
since relatively less communication is being performed.

The times in minutes for the single and 8 node run for each case are shown
in the figure. Performance scales poorly for the first case, actually decreasing
when using two compute nodes. This is most likely due to the computation be-
ing unevenly distributed and the communication overhead. With more compute
nodes, performance increases somewhat but is never greater than double that of
the serial case. The larger grain size of the second case results in significantly
improved speedup. The third curve scales similarly since the grain size is only
slightly increased for this case.

5 Conclusion

The evolution of an EST clustering program has been discussed in this ex-
tended abstract. Background information on the problem has been presented
along with details of two sequential implementations and a parallel implemen-
tation. Planned extensions to UIcluster include utilizing the recently released
human genome sequence [3I8] to improve the accuracy of clustering, and to aid

A Parallel Expressed Sequence Tag (EST) Clustering Program 497

in identification of alternative splice forms and intron/exon boundaries. Other
extensions planned include improved performance for long sequences (e.g., full
length ¢cDNA sequences), automatic cluster merging, and tools for manual cura-
tion of clustering results by expert human operators.

References

1. Adams M.D., Kerlavage A.R., Fleishmann R.D., Fuldner R.A., Bult C.J., Lee N.H.,
Kirkness E.F., Weinstock K.G., Gocayne J.D., White O., et al. (1995) Initial as-
sessment of human gene diversity and expression patterns based upon 83 million
nucleotides of cDNA sequence. Nature 377:3-17

2. Bonaldo ML.F., Lennon G., Soares M.B. (1996) Normalization and subtraction: two
approaches to facilitate gene discovery. Genome Research 6:791-806

3. International Human Genome Sequencing Consortium (2001) Initial sequencing and
analysis of the human genome. Nature 409:860-921

4. Message Passing Interface Form (1994) MPI: A message-passing interface standard.
University of Tennessee Technical Report CS-94-230

5. Miller R.T., Christoffels A.G., Gopalakrishnan C., Burke J.A., Ptitsyn A.A.,
Broveak T.R., Hide W.A. (1999) A comprehensive approach to clustering of ex-
pressed human gene sequence: The Sequence Tag Alighment and Consensus Knowl-
edgebase. Genome Research 9:1143-1155

6. Parsons J.D., Brenner S., Bishop M.J. (1992) Clustering cDNA Sequences. Compu-
tational Applications in Bioscience 8:461-466

7. Schuler G.D. (1997) Pieces of the puzzle: expressed sequence tags and the catalog
of human genes. Journal of Molecular Medicine 75:694-698

8. Venter J.C., Adams M.D., Myers EW., Li P.W., Mural R.J., Sutton G.G., et
al. (2001) The sequence of the human genome. Science 291:1304-1351

	Introduction
	Expressed Sequence Tags (ESTs)
	Uses of Clustering
	Program Evolution
	Revision 1.0
	Revision 2.0
	Revision 3.0

	Conclusion

